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Introduction: The first undergraduate research project I mentored was a Junior math-
ematics major, Eric Miller. Eric was the recipient of a Magellan Scholar Award through the
University of South Carolina which provided him with a salary to conduct faculty-mentored
independent research. For our project we sought to generalize the Dinitz Conjecture to Sudoku
puzzles. The Dinitz Conjecture was posed in 1979 and was proved by Fred Galvin in 1994;
however, the Dinitz Conjecture retains its title and can be stated as follows.

Conjecture 1. (Dinitz Conjecture) The list chromatic number (or choosability) of an n × n
Latin square is n. In other words, consider an n × n array and fix a set of m ≥ n symbols.
For each cell pick an element of

(
[m]
n

)
where the same set can be chosen for multiple cells. Is it

always possible to pick an entry for each cell from its designated list so that the symbols in a
row/column are distinct?

The Dinitz Conjecture can be stated as a list edge-coloring problem for the complete bipar-
tite graph Kn,n. Galvin resolved the conjecture by showing that the list edge-coloring number
of a bipartite graph is equal to its edge-coloring number. However, Galvin’s approach does
not apply to the graph of a Sudoku board as the analogous Sudoku graph is not bipartite (the
graph is a blow-up of Kn,n by Kn).

For Miller’s project we investigated the choosability of a Sudoku puzzle. Let On denote the
graph of the order-n Sudoku board which consists of n2×n2 vertices (i.e., the cells) and where
two vertices are adjacent if and only if the corresponding cells are in the same row, column, or
block of the order-n Sudoku board. As an example, O2 = ([16], E) is the graph of the 4 × 4
Sudoku board with four 2× 2 blocks (see Figure 1 for an orientation of O∈).

Conjecture 2. (Generalized Dinitz Conjecture) The list chromatic number of the order-n Su-
doku board is n2.

Denote the list chromatic number of a graph G by ch(G). We were able to show

n2 ≤ ch(On) ≤ 2n2 − 2n + 1

so that for the simplest case 4 ≤ ch(O2) ≤ 5. While Galvin’s proof is not applicable to a Sudoku
graph, we were able to model his approach by combining graph theoretical and computational
tools. Graph theoretically, one can show that the list-chromatic number of a graph is equal its
chromatic number if the graph is kernel-perfect. A digraph is kernel-perfect if every induced
subgraph has a kernel (i.e., an independent set where each vertex not in the set is incident to
a vertex in the independent set). Richardson’s theorem states that a digraph is kernel-perfect
if it has no odd cycles. Thus, our approach was to construct an orientation of the edges of
O2 which was kernel-perfect. For induced bipartite subgraphs the result was immediate (from
Galvin’s proof a la Richardson’s theorem). Indeed we could show ch(O2) = 4 if we could verify
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Figure 1: An orientation of O2.

that the induced subgraphs which had odd-cycles were kernel-perfect. Miller wrote a program
in Sage to check if a particular subgraph was kernel-perfect. We further used the symmetry of
the graph to reduce the search space of the computation. Unfortunately, the project ran out of
time before we were able to determine the choosability of the order-2 Sudoku puzzle.

Future Work: The generalization of the Dinitz Conjecture to Sudoku puzzles remains
open. This question is suitable for undergraduate student research because of the nature of its
approach. Consider first the question of determining ch(O2). To prove ch(O2) = 4 one would
have to give an orientation of the edges of O2 which is kernel-perfect. I believe Miller’s construc-
tion, given in Figure 1 is a contender for such an orientation. Once a particular construction
has been considered, one would have to verify that all non-bipartite induced subgraphs are
kernel perfect. While the number of such subgraphs is large the number of unique subgraphs
up to isomorphism is considerably smaller. On the other hand, one could prove ch(O2) = 5 by
constructing an unsolvable order-4 Sudoku puzzle where each cell could be chosen from one of
any four symbols. One could even make constructions randomly or by combining uncompleted
Sudoku puzzles which are unsolvable in the traditional sense. In either case, the requisite
knowledge (both in graph theory and computing) can be explained to eager students with any
level of background.

What makes determining O2 valuable for undergraduate research is that a solution (whether
it be to support or deny the generalized conjecture) is insightful. List coloring questions are
notoriously difficult despite their accessibility. If one could show ch(O2) = 4, it is likely that the
generalization of the Dinitz Conjecture is true and a general argument could follow by extending
the proof and providing the requisite orientation. If instead ch(O2) = 5 then it would hint at
a strong necessary condition for kernel-perfect graphs (note that Richardson’s theorem is not
biconditional). In either case, this work could inspire further work at the graduate level as there
are numerous open questions concerning list colorings including the choosability of claw-free
graphs and Rota’s basis conjecture.
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